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A simple formula is derived which expresses the Debye temperature of a disordered multicomponent alloy 
with small atomic radius disparity in terms of the Debye temperatures of the pure components, the mole 
fractions of the components, and a set of undetermined parameters, each of which can be found from the 
Debye temperature for one composition of each possible binary allo3; made from the components. The 
formula is an improvement on a similar formula for the binary case due to Mitra and Chattopadhyay 
because the physical significance of the undetermined parameters is more readily apparent. The influence 
of short-range order in the binary case is considered. Application is made to the Ag-Au-Pd, Cr-Fe, and 
Cu-Ni systems in order to test the formula. 

Recently Mitra & Chat topadhyay (1972) derived a for- 
mula which can be used to interpolate the Debye tem- 
perature of a binary alloy from the Debye temperatures of 
the pure metals. It contains one adjustable parameter which 
can be determined from a measurement of the Debye tem- 
perature at one intermediate composition. For such a for- 
mula to be useful as an interpolation formula it is necessary 
that the adjustable parameter be independent of composi- 
tion, and that there be a physical basis for this. The pur- 
pose of the present paper is to derive a generalization of 
the formula to n-component alloys, and to choose a set of 
adjustable parameters, the physical significance and com- 
position independence of which is somewhat more apparent 
than in the formula of Mitra & Chattopadhyay (1972). 
The influence of short-range order in the case of binary 
alloys is also considered. The formula is applied to the 
Fe-Cr,  Cu-Ni,  and Ag-Au-Pd  systems. 

The derivation of the formula begins with a result which 
can be deduced from a recent formal analysis of correla- 
tions in disordered binary cubic substitutional alloys [see 
equation (24) of Shirley (1974)]. It is that, in the classical 
regime, for alloys with negligible atomic radius disparity, 
the mean-square displacement of an atom from its lattice 
site is 

(u 2 ) = x T Trace G(0) = tc T Trace g(0)/2 U", 

where G(0) is the static Green's function for the 'average' 
lattice evaluated at the origin. T is the absolute temperature 
and K is Boltzmann's constant. The second equality holds 
if nearest-neighbor (n.n.) interactions only are taken into 
account, g is a dimensionless Green's function [tabulated 
for f.c.c, by Flinn & Maradudin (1962)] and U"  is given by 

U"= m 2 Vl't" + m22 V22 + 2mira2 V12 , 

where ml and m2 are the mole fractions of type 1 and type 2 
atoms, and where V~,~ is the second derivative of the inter- 
atomic potential acting between an atom of type x and one 
of type y, evaluated at the nearest-neighbor separation of 
the average lattice. If the atoms are noble or transition 
metals, then the most important part of the potentials at 
the n.n. separation is the exchange repulsion between the 
core electrons. The shapes of the potentials are not likely 
to vary greatly with composition because the core electronic 
configurations are generally insensitive to composition. If, 
in addition, the atomic radii are similar, then the second 
derivative is taken at about the same point on the potential 
curves irrespective of composition and V;'y will be largely 
composition independent. These considerations lead to the 
following generalization: For  an n-component disordered 

cubic substitutional alloy of transition and/or noble metals 
of negligible atomic radius disparity, 

(u2)=CtcT/f (1) 
where 

i = l  j = l  

Here f is an average nearest-neighbor force constant, f~s is 
a composition-independent force constant acting between 
n.n. atoms of type i and j ,  Pt.t is the a priori probability of 
occurrence of an i-j atom pair as nearest neighbors (for a 
random alloy, Pts = mtmj), and C is a numerical constant 
which depends on the lattice structure. For the f.c.c, lattice, 
C=2.515 (Flinn & Maradudin, 1962). We define the fol- 
lowing set of ½n(n- 1) constants" 

zis = 2 f J ( f u  +fjs) ( i# j ) .  (3) 

Zts is the factor by which fts differs from the arithmetic 
mean of f ,  and fjs. Using equation (3), equation (2) can 
be written 

/ = I  i=1 j = l  
q~J) 

Now the X-ray Debye temperature, 0, for  an alloy is defined 
by (James, 1962) 

1 )  9h 2 (TO(0/T) 
( u ~ ) = ~  go  2 + ~ u o  ' 

(5) 

where a is the atomic mass unit, h is Planck's constant, 
(0 is Debye's function, and 

/t = ~ mi,ut 

/ 

/=1 

in which at is the atomic weight of the i th component.  
Equations (1) and (5) must agree asymptotically as T - +  oo 
so, using ~(0)= 1, one writes 

f=  ( Cx2a/9h2)pO 2 . (6) 

For the pure metals this becomes 

fu = (Cx2al9h2)lt, 02 , (7) 

where 0t is the pure-metal Debye temperature. For a ran- 
dom alloy, substitution of (7) into (4) yields 

].LO 2=  ~ m#ttO~ + ½ ~ ~ (ris-- 1)mtms(lqO 2 + ltjO~) (8) 
i = l  i=1 j = l  
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where the restriction i ¢ j  has been removed by taking 
zu = 1, and where we have used 

~ m t = l  . 
i=1 

Equation (8) is the n-component interpolation formula. If 
the pure-metal Debye temperatures are known, then each 
of the constants z,j may be determined by measurement 
of the Debye temperature of one i-] binary alloy. Of course 
this procedure applies only to alloy systems forming a 
single solid-solution phase for all compositions. The for- 
mula will hold in any composition domain which encom- 
passes a single solid-solution phase, but the determination 
of all of the/~0~ and ~'tj may not be as simple. In general, 
measurements of Debye temperatures at ½n(n + 1) composi- 
tions will determine all of the ~t0~ and rij, but the com- 
positions must be chosen so that the 'inverse' of equation 
(8) exists. 

It should be noted that although the derivation of (8) 
was for X-ray Debye temperatures, it also applied to specific- 
heat Debye temperatures since the two differ by a factor 
depending on Poisson's ratio (James, 1962), which does 
not vary greatly from metal to metal. 

For a non-random binary alloy, the a priori probabilities 
are given by 

Pll = m~ + mlm2oc , P22 = m~ + mlm~e , P~2 = mlm2(1 - oO 

where e is the n.n. Cowley-Warren short-range-order par- 
ameter (Cowley, 1950). When these are used in (4) one finds 

ltO 2 = mlltlO 2 + m2f1202 

+(z~2- 1) ( 1 -  oOmxmz(lttO~+lt20~). (9) 

Short-range order is a strong function of composition and 
thermal history, so equation (9) shows how it can cause 
some scatter in "rt~ determined at different intermediate 
compositions or from different specimens. The effect is 
limited, however, by the fact that 1~1 cannot exceed about 
0.2 in the disordered phase (Moss & Clapp, 1968). 

To test the validity of the ideas presented above, values 
of r were computed from (9) with e = 0 for several transition/ 
noble metal binary alloys with small atomic radius disparity, 
and the results are given in Table 1. When one examines 
the data and the calculations which the numbers in Table 1 
summarize, it is apparent that (except for the Ag-Au alloy, 
which has mA~ = 0"5) the data is well spread across the com- 
position range, and that variation in the values of r rep- 
resented as the errors in Table 1 is largely uncorrelated with 
the composition and is therefore probably attributable to 
experimental error. This indicates that ~- is indeed composi- 
tion independent as anticipated above. Although this is a 
necessary condition for the formula's usefulness, it is not 
especially interesting, since a parabola specified by a con- 
stant could probably fit the data as well. What is interest- 
ing, however, is to compare the values of r in Table 1 with 
those computed via (3) using the nearest-neighbor central 
force constants derived by Niu & Shimizu (1967) from 
elastic constants data for the Ag-Au and Cu-Ni alloys. 
The results of Niu & Shimizu (1967) lead to z(Ag-Au)= 
0"95 and z(Cu-Ni)= 1.01. These values agree with the cor- 
responding results in Table 1, except for those derived 
from the data of Mitra & Chattopadhyay (1972). Since all 
sets of data, including those analyzed by Niu & Shimizu 
(1967), are independent, this indicates a possible systematic 
error in the data of Mitra & Chattopadhyay (1972). On 

balance, then, ~- does seem to reflect the strength of the un- 
like-atom force constant relative to the average of the like- 
atom force constants. 

Table 1. Values of  r for several binary alloy systems 

Number of 
Alloy intermediate 

system compositions z Reference 
Ag-Au 1 0"90 1 
Ag-Pd 3 1.16 + 0.06 1 
Au-Pd 3 1 "29 + 0.05 1 
Cr-Fe 5 0"72 + 0.05 2 
Cu-Ni 8 1-06 + 0.06 3 
Cu-Ni 13 1.09 + 0.12 4 
Cu-Ni 7 0.80 + 0.05 5 

References: (1) Naidu & Houska (1971). (2) Shirley, Lally, 
Thomas & Fisher (1975). (3) Brandstetter, Ebel & Lihl (1968). 
(4) Faninger (1971). (5) Mitra & Chattopadhyay (1972). 

The formula (8) is especially useful for multicomponent 
alloy systems because it is only necessary to measure 0 for 
each pure component and for one composition of each 
possible binary alloy to define 0 for all compositions of the 
alloy system. To illustrate this for a ternary system, average 
values of r in Table 1 for Ag-Au, Ag-Pd, and Au-Pd were 
used in (8) with the pure-metal Debye temperatures to 
predict the Debye temperatures for the ternary alloys for 
which Naidu & Houska (1971) measured 0. The predicted 
and measured values of the Debye temperature are given 
in Table 2. The agreement is good except for the 75 % Pd 
alloy. However, when 0 for the alloys Pd(1 - 2x)Ag(x)Au(x) 
are plotted against x (including x = 0 and x = ½), 0 for x =-} 
seems anomalously low. Thus, there is a good chance of 
some kind of error in the measurement for x=,~. 

Table 2. Comparison of  the Debye temperature for Ag-Au-  
Pd ternary alloys as measured by Naidu & Houska (1971) 

and as predicted by equation (8) 

Alloy Measured Predicted 
Pd(0-75)Ag(0.125)Au(0.125) 250 274 
Pd(0"50)Ag(0.250)Au(0.250) 250 253 
Pd(0"25)Ag(0.375)Au(0-375) 230 227 
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